

Pierre Fertey pierre.fertey@synchrotron-soleil.fr

Les sources de Rayons X comparer différentes sources produire des Rayons-X Source de laboratoire

Grands Instruments

Lab. source 0.3 m

Synchrotron 100 m

Mova/Nova (Agilent μ-sources)

\$

Linac Coherent Light Source (USA)

How to compare X-ray sources?

spectral brilliance/brightness:

Photon flux based on the source size and divergence per $\Delta E/E = 0.1\%$ bandwith

ph/s/mrad²/mm²/0.1%BW

Flux (ph/s) Energy (keV) or Wavelength (Å) Source size σ_x , σ_y (mm) Divergence σ'_x , σ'_y (mrad)*

*(1 mrad ~ 0.06°)

Sources de laboratoire

Sources de laboratoire Tubes à rayons X

principe:

$$\eta = \frac{E(X)}{E(e^{-})} \sim 10^{-6} \text{ Z V(kV) } < 1\%$$

Tube scellé

Anode tournante

Micro-source

Jet de métal liquide

Mécanisme de production des rayons X « de laboratoire »

rayonnement blanc + raies caractéristiques

NAN

rayonnement de freinage Bremstrahlung effet photoélectrique

Sources de laboratoire

Paramètres des sources de laboratoire

ex.: tube scellé: Mo (2kW) V_{K} = 20 kV, i = 40 mA, V = 40 kV

Sources de laboratoire

Tube scellé µ source

Brillance spectrale : 2 10⁹ UB

Les sources synchrotron

Le rayonnement synchrotron

✓ forte brillance > 10¹⁰ x brillance (source labo)!!

✓ rayonnement blanc: des IR lointains aux rayons X durs

Iumière pulsée et polarisée (linéairement, circulairement...)

Synchrotron

Principe : une particule chargée soumise à une accélération rayonne!

Synchrotron

Principe : une particule chargée soumise à une accélération rayonne!

accélérer les e⁻ pour émission de lumière: trajectoire courbe régime relativiste (v ~ c) : collimation

Synchrotron

Un rayonnement blanc

 $\Delta t \sim 10^{-20} \text{ s} \rightarrow \text{composantes fréquentielles jusqu'à 1/} \Delta t$ rayonnement blanc $\rightarrow \text{des IR jusqu'au rayons X!}$

Synchrotron: la machine

Cavité Radiofréquence (352 MHz)

compenser l'énergie perdue par rayonnement au cours d'une révolution 1150 keV ~ 0.04% si non 2.75 GeV perdus en 3 ms (~2 400 t) !! ENHORT with the Chart Street as

Générateur radiofréquence

1^{er} cryomodule (cavité RF refroidie à 4K)

Onduleur à aimants permanents ex. U20

Système magnétique: Hybride Aimant permanent: Sm_2Co_{17} Pôle magnétique: Vanadium Permendur Gap = 5.5 mm – 30 mm Période = 20 mm Nper = 98, Longueur = 2 m B₀ = 0.97 T

Onduleur électromagnétique ex. HU640 Gap = 19 mmPériode = 640 mm $\frac{1}{2}$ machoire Nper = 14, Longueur = 9 m supérieure B_{x.z} ~0.1 T Energie: 5 - 40 eV 1000 • No iron poles (~VUV) 3 [am] No motion ajustement de la polarisation du faisceau 3 jeux de bobines (RVB) $R \text{ et } B (B_{-})$ 2 [m] $V(B_{x})$

X [205]

2 exemples :

→ Parallelisme du faisceau

→ Accordabilité de la longueur d'onde

Synchrotron source: a low divergent x-ray beam

Synchrotron source: wavelength tunability - example

Cation distribution in photovoltaïc Cu₂ZnSnS₄ derivatives: A single crystal anomalous diffraction investigation

Lafond et al., Acta Cryst. B70, 390 (2014)

Synchrotron source: wavelength tunability - example

Anomalous diffraction @ Cu Kα edge : enhancement of the Cu/Zn contrast

 $E = 8.968 \text{ keV} (1.382 \text{ Å}) : Z(Zn) - Z(Cu) \sim 4 \text{ e-}$

Synchrotron source: wavelength tunability - example

Source de rayons X synchrotrons: une lumière pulsée

Mode de remplissage: (ex. Soleil)

uniforme: 1 bouffée ~ 40 ps toutes les ~ 3 ns

8 paquets: ~70 ps toutes les ~ 150 ns

hybride:

ex. 312 + 1

vers des bouffées encore plus courtes...

1 paquets « tranchés »: ~130 fs toutes les ~ 1.2 μs

Chaque paquet est « tranché » par une impulsion laser pour créer un paquet plus court

Expériences résolues en temps

Source synchrotron: une lumière polarisée

Onduleur avec Bz + Bx

Polarisation accordable

Onduleur + « phase plate »

Diffraction magnétique

ex. domaines magnétiques, structures magnétiques

Source synchrotron: une source cohérente

(cf. cours de D. Le Bolloc'h vendredi après-midi)

... encore plus de photons ?

Les sources de 4^{ème} génération XFEL

Principe : après une certaine distance parcourue dans un onduleur, les e⁻ sont sensibles au champ électrique rayonné par les autres e⁻

Les sources de 4^{ème} génération XFEL

Linac Coherent Light Source (Standford, USA)

XFEL/Spring 8 (Hyogo, Japon)

✓ E-XFEL (Hamburg, Allemagne)

2.5 - 20 GeV, 3.4 km $\lambda \sim 1 - 60 \text{ Å}$ brillance moyenne > 10²⁵, pic ~10³³ ~ 10¹² photon/impulsion Taux de répétition 30 kHz $\sigma \sim 100 \ \mu\text{m}, \sigma' \sim 0.8 \ \mu\text{rad}$ durée de l'impulsion ~ 100 fs

(X)FEL: liste exhaustive cf. http://sbfel3.ucsb.edu/www/vl_fel.html

Optiques pour les Rayons X

✓ Faisceau monochromatique

✓ Faisceau focalisé

Optiques pour les Rayons X

Monochromateurs extraire un faisceau monochromatique du faisceau blanc

Principe : réflexion du faisceau blanc sur une famille de plans réticulaires

Optiques pour les Rayons X

Monochromateur

channel cut

Monochromateur double cristaux

sortie fixe (H fixe)

Refroidissement à l'azote liquide (P_{Max} = 135 W; D_{Max} = 28 W/mm²)

Optiques pour les Rayons X Miroirs (focalisants)

Rayons X $n = 1 - \delta + i\beta$ $n \leq 1$ réflexion totale quand $\alpha < \alpha_c$

Optiques pour les Rayons X

Miroirs (focalisants)

Rejection d'harmoniques

pour couvrir un large domaine d'énergie: plusieurs pistes de densité différente

Optiques pour les Rayons X Miroirs (focalisants)

Miroir bimorphe déformable (piézoélectrique) 3 pistes: Si, Rh, Pt

Miroir déformable (mécanique) 3 pistes: Si, Rh, Pt

géométrie type Kirkpatrick-Baez (1948)

Un compromis intéressant: les miroirs multicouches

accroissement de la réflectivité au delà de α_c par addition cohérente de la réflectivité de surface empilée

 $n \lambda \sim 2 \cdot \Lambda \cdot \sin \theta$

faisceau monochromatique

+ courbure = focalisation

faisceau monochromatique + focalisé

Miroirs multicouches rendre le faisceau monochromatique + focalisation

$\lambda \sim 2 \cdot \Lambda \cdot \sin \theta$

Miroirs multicouches rendre le faisceau monochromatique + focalisation

Optiques pour les Rayons X

Lentilles réfractives

Optiques pour les Rayons X

Lentilles de Fresnel

Des faisceaux toujours plus petits....

		REFLECTIVE	DIFFRACTIVE	REFRACTIVE		
	Kirkpatrick Baez systems		Capillaries	Waveguides	Fresnel Zone plates	Refractive lenses
	mirrors Kirkpatrick Baez, 1948	multilayers Underwood Barbee, 1986	Kreger 1948	Feng <i>et al.</i> 1993	Baez 1952	Snigirev <i>et al</i> ., 1996
Е	< 30 keV	< 80 keV	< 20 keV	< 20 keV	< 30 keV (80)	<1 MeV
∆E/E	wide band	10 ⁻²	wide band	10 ⁻² – 10 ⁻³	10 ⁻³ - 10 ⁻⁴	10 ⁻³ - 10 ⁻⁴
resolution/ min. spot size	25 nm 15keV Mimura (2006)	41×45 nm² 24keV Hignette (2005)	50 nm Bilderback (1994)	40×25 nm² Salditt (2004)	30 nm 20keV Kang, (2006) ~15nm <1keV	50 nm@20keV Schroer (2004) 150 nm @50keV Snigirev (2006)
spot-size	+++	+++	+++	+++	+++	+++
flux achroma <u>tic</u>	+++ YES	+++ NO	 YES	 NO	++ NO	+ NO <i>but</i> f(N,E)
coherence	+	+	+/-	+++	++	+/-
in-line			YES	YES	YES	YES
easy to use	+/-	+/-	++	+/-	++	++
clean-spot	+++	++	+++	+	+	++

courtesy C. Mocuta

A.Snigirev et al., C.R.Physique 9 (2008) 57

La détection des Rayons X

La détection

- ✓ Compteurs à scintillations
- ✓ Compteurs à semi-conducteur
- ✓ Image plate
- ✓ Couplage de charge
- ✓ Pixels

détecteur bi-dimensionnel

paramètres importants : {

Efficacité Dynamique Résolutions (spatiale/énergie)

Détection des Rayons X

Image Plate

Principe : Plague avec un mélange de BaFBr:Eu2+ cristaux photo-stimulables = centres photosensibles = stockent une partie de l'énergie des rayons X qui les touchent ($t_{1/2} \sim 8h$)

Avantages:

- grande surface
- bonne dynamique (> 10⁵)
- résolution acceptable (~100µm)

Inconvénient:

temps de lecture (~1-2 min)

X Ray detection

Détecteur à intrégration de charges (CCD/CMOS)

Détection des Rayons X

Détecteur compteur de photon (Hybrid Pixel Detectors)

Principe : chaque pixel est un petit détecteur indépendant, ayant sa propre chaîne de décision (amplification/seuil) et son système de lecture

XPAD

80 × 120 pixels

 $7 \times 12 \text{ cm}^2$

8 * (7 chips)

autre ex. : Medipix, Pilatus ...

X Ray detection

			Hybrid
	CCD	CMOS	pixels
type	charge integrating	charge integrating	photon counting
signal out of pixel	e- packet	Voltage	Voltage
signal out of chip	Voltage (analogue)	Bits (digital)	Bits (digital)
signal out ouf camera	Bits (digital)	Bits (digital)	Bits (digital)
sensor complexity	+	-	
pixel size	+ (~ 50	μm) +	- (~ 130 μm*)
dynamic range	+ (15-18	bits) -	++ (32 bits*)
uniformity (dark/illumination)	+/+	-/+	++/++
speed	- (5Hz)	+	++ (1 kHz)
windowing (Region Of Interest)		++	++
antiblooming	-	++	++
continuous scans (shutter free)	-	+	+
dead zones	+	+	
			(* ImXPAD detector)

Techniques usuelles de diffraction Diffraction sur monocristal

Diffraction sur monocristal

Enregistrement simultané d'un grand nombre de raies de Bragg

Diffraction sur monocristal

 Ω_{ν}

20⁽¹⁾

Géométrie « kappa »

Diffractomètre 4 cercles faisceau monochromatique

faisceau monochromatique Orienter le cristal dans une direction quelconque Mesurer l'intensité des taches de Bragg

(le plus grand nombre possible avec la meilleure précision)

échantillon: dim_{max}~ 150 μm

Géométrie eulérienne

Géométrie « kappa » pour réduire les effets d'ombrage Détecteur 2D χ = combinaison des rotations ω , κ et ϕ

Méthode d'oscillation

rotation du cristal (typiquement 1°) et collecte simultanéée des intensité

Méthode d'oscillation

rotation du cristal (typiquement 1°) et collecte simultanéée des intensité

Techniques usuelles de diffraction Diffraction par les poudres

Méthode des poudres

Poudre : ensemble de monocristaux (<1-10 µm) orientés aléatoirement.

 \rightarrow 2d sin $\theta = \lambda$ satisfaite \forall d

 \checkmark dispersion angulaire λ = fixed

 $d_{hkl} \longrightarrow \theta_{hkl}$

 \checkmark dispersion d'énergie θ = fixed

d_{hkl} → λ_{hkl}

Méthode des poudres

Poudre : ensemble de monocristaux (<1-10 µm) orientés aléatoirement.

Méthode des poudres Haute résolution

améliorations :

✓ du rapport signal/bruit

I_{max} / bruit ~ 1000

✓ de la largeur des raies

Méthode des poudres

Diffractomètre 2 cercles @ CRISTAL

exemple: transition de phase structurale

Méthode des poudres: intérêts

si pas de (« gros »)monocristal, fonction de distribution de paires (pdf)

- ✓ identification de phase
- ✓ rapide
- ✓ ...

mais info 3D perdue!!! Raies symétriquement équivalentes superposées Raies à dhkl proches se recouvrent...

méthode dispersive

environnement échantillon contraignant (étude sous P) détecteur résolu en énergie

Diffraction sous conditions non ambiantes

Conditions non ambiantes

Basse (haute) température

1) souffler un gaz froid (chaud) (N₂, He) sur l'échantillon

11K < T < 500K

Conditions non ambiantes

Basse (haute) température

2) placer l'échantillon dans un cryostat (four)

Cryostat à bain d'He: $T_{min} \sim 3K$

Fenêtre/dôme de Be

Pression

cellule à enclume de diamant

transparente RX/visible P_{max} ~ 5 - 300 GPa faible encombrement (implantable dans cryostat) angle d'ouverture limité

source RX

détecteur

monochromateur collimateur

1 GPa = 10 kbars

Ajustement in-situ de la pression in-situ (Membrane Diamond Anvil Cell)

Basses Températures

 $T_{min} = 4 K$

Température Ambiante (configuration mesure de pression)

Experimental setup @ 6-circle.cristal.soleil

Fast (ultra-fast) Time resolved experiments

Time resolved experiments

"single shot" method very brillante source(cf. XFEL)

sample

XFEL source - ex. of a « single shot » experiment

Protein crystallography lysozylme @SFX.LCLS.eu

Figure 1 | **Femtosecond nanocrystallography.** Nanocrystals flow in their buffer solution in a gas-focused, 4- μ m-diameter jet at a velocity of 10 m s⁻¹ perpendicular to the pulsed X-ray FEL beam that is focused on the jet. Inset, environmental scanning electron micrograph of the nozzle, flowing jet and focusing gas³⁰. Two pairs of high-frame-rate pnCCD detectors¹² record low-and high-angle diffraction from single X-ray FEL pulses, at the FEL repetition rate of 30 Hz. Crystals arrive at random times and orientations in the beam, and the probability of hitting one is proportional to the crystal concentration.

Chapman et al., Nature 470, 73 (2011)

XFEL source - ex. of a « single shot » experiment

Protein crystallography lysozylme @SFX.LCLS.eu

	A A			
200 µm	1 / /	C. The	Parameter	40-fs pulses
- Come		11-1-1	Wavelength	1.32 Å
	\setminus / ⁻		X-ray focus (µm ²)	~10
			Pulse energy/fluence at sample	600 μ]/4 \times 10 ¹¹ photons per pulse
	1		Dose (MGy)	33.0 per crystal
Liquid jet	A States	1.1.1 2	Dose rate (Gy/s)	8.3×10^{20}
		S	_F Space group	P43212
v ray pulses		and a second	(Unit cell length (Å), $\alpha = \beta = \gamma = 90^{\circ}$	a = b = 79, c = 38
LCLS X-ILI		and and a second	Oscillation range/exposure time	Still exp./40 fs*
1.005	Interaction	Front pnCCD	No. collected diffraction images	1,471,615
	point	(z = 68 mm)	No. of hits/indexed images	66,442/12,247
			Number of reflections	n.a.
			Number of unique reflections	9921
			Resolution limits (Å)	35.3-1.9
			Completeness	98.3% (96.6%)
			<i>Ι/σ(I)</i>	7.4 (2.8)
			R _{split}	0.158
			R _{merge}	n.a.
			Wilson B factor	28.3 Å ²
			R-factor/R-free	0.196/0.229
			Rmsd bonds, Rmsd angles	0.006 Å, 1.00°
			PDB code	4ET8

Boutet et al., Science 337, 362 (2012)

Time resolved experiments

pump-probe method (stroboscopic method)

reversible processus time relaxation adapted with excitation frequency

Pump : laser pulse (~ 40 fs) Probe : X-ray pulse (ESRF 50 ps, SOLEIL 30/10 ps, 130 fs, XFEL!!)

XFEL source - ex. of a « single shot » experiment Time resolved Serial Protein crystallography@SFX.LCLS.eu

dissociation photo-induite du complexe myoglobin-CO photolyse de la liaison Fe-CO ~ 500 fs

Barends et all., Science 350, 445 (2015)

Time resolved experiments: example of a pumb-probe experiment Te @ Swiss Ligth Source

Time resolved experiments: example of a pumb-probe experiment Bi @ Swiss Ligth Source

Johnson et al. Phys. Rev. Lett. 103, 205501 (2009)

Conclusion: intérêts des Sources de RX synchrotrons

Brillance : Intensités faibles

Structures complexes Petits cristaux (< 20 µm) Densité électroniques Expériences résolues en temps Diffraction magnétique...

Faible divergence : Précisions des mesures

Séparation de phases Résolution de structures poudres (ab initio) Diffraction cohérente...

Accordabilité

Longueur d'onde optimale (cf. bio-cristallographie) Diffraction résonnante

Cohérence

Polarisation « accordable » (nature et/ou direction)

Lumière pulsée Expériences résolues en temps (ps, qq 10 fs)

